
© 2017 Parasoft Corporation

1

End-to-End Testing for IoT Integrity

WHY THE EVOLUTION OF IOT PRESENTS TESTING CHALLENGES

“Internet of Things” solutions are evolving, and testing them requires a comprehensive thought 

process. Although testing practices and activities are well known, the density and the combination 

of technologies are changing. In the past, embedded software engineering was positioned apart 

from other areas of the software development landscape, but this is no longer the case, as the 

entire stack of applications can often function as a single solution. People in charge of system 

quality need to understand the challenges related to low-level embedded testing, as well as the 

challenges related to service components.

The structure of IoT systems has evolved beyond simple client devices providing data or receiving 

instructions. Instead of simply performing actions based on instructions received from “the cloud,” 

IoT systems now also make decisions based on data from within their subsystem. The idea that 

IoT components may be connected in complex configurations requires us to think about the 

exponentially expanding problem of testing IoT architectures. 

When you create applications that publish and/or consume services within an IoT environment, 

it is your responsibility to ensure that all elements of the solution stack function correctly. This 

usually includes low-level testing of the microcontroller layer, as well as higher-level verification of 

transactions between the various endpoints. If your application fails to deliver the expected results, 

your customers and partners will not care whether the failure stems from code you developed or 

from a component you’ve integrated.

The wide array of technologies now being deployed in very basic solutions used to be characteristic 

of bigger, more expensive projects, such as logistic systems developed for large organizations, 

which often rely on homegrown solutions for testing. In the current IoT world, knowledge of 

different technologies is important, but assuring that the information is correctly exchanged and 

interpreted from end-to-end is equally important. Organizations should be equipped with easy-to-

use and reliable testing solutions that are able to test such a broad array of technologies and help 

analyze testing results from different sub-components of the solution. 

EXECUTIVE SUMMARY

IoT solutions are composed of at least two layers, often a device 

at the front-end that collects data and performs specific actions, 

and a back-end application that processes the data and provides 

commands. But even in very simple IoT solutions, it can be difficult 

to ensure that end-to-end data and control flow are secure, reliable, 

and compliant due to the blend of disparate technologies, such as 

low-level microcontrollers and higher-level server programming. In 

this paper, we’ll discuss the testing challenges associated with IoT 

architectures, including the effectiveness of an end-to-end approach 

to IoT system verification. 

Technical Whitepaper



© 2017 Parasoft Corporation

2

EXAMPLE IOT SOLUTION

We’ll frame our discussion about end-to-end testing 

for IoT systems within the context of the following 

example. Consider a medical solution that consist of 

the following components:

•	 Wearable blood sensor (e.g., glucose sensor)

•	 Wearable medication injector (e.g., insulin)

•	 Smartphone

•	 Cloud-based healthcare system

2

In this example, a sensor monitors the blood for a certain parameter, 

such as glucose level, and performs measurements in timed 

intervals. The intervals can be changed with a dedicated command, 

while another command performs measurements on demand. 

Measurements are sent wirelessly to an app on the smartphone. The 

app stores the values locally in a database and provides an interface 

so that the user can observe the changes of glucose levels in the 

blood, monitor and compare historical data, monitor changes around 

meal times, and take other actions. The insulin injector follows 

a programmed schedule, but if it’s disconnected from the other 

components of the system (e.g., disruption to the network), then it can 

follow a “safe” plan of injections.

The smartphone app serves as a middleware, and in addition to 

providing simple analysis to the user. The app forwards glucose 

level information to a cloud-based healthcare system for additional 

processing. The cloud application compares the current measurement 

to historical data and performs advanced analysis, looking for 

unwanted patterns. In the case of potential danger, the system sends 

a warning directly to the user or reports to a human medical staff. A 

specialized medical consultant can immediately analyze the data and 

decide whether or not a special alert to the patient is appropriate.

The patient receives an alarm and guidance for the next steps, which 

can include changes in the medication dosing. After the patient’s 

approval, changes to the medication dose are delivered to injector. 

If the patient does not respond, then the medical consultant can use 

the GPS information packaged with the smartphone data to send an 

ambulance.

From the technology perspective, we assume that the glucose sensor 

and injector are MCU-based systems developed in C language. 

The middleware application in the smartphone and the cloud back- 

end are developed in Java. The sensor, smartphone app, and 

injector exchange the data wirelessly using a custom protocol. The 

smartphone app and cloud healthcare system exchange data using 

HTTP. 

THE EFFECTIVENESS OF END-TO-END TESTING FOR IOT

Very often in many organizations, end-to-end testing performed 

at the system level is the first and only choice, mainly because (on 

the surface) fully assembling the system and testing it seems like 

the most logical and effective use of QA resources. Testing user 

requirements on the integrated system would seem to be the closest 

the organization would get to realistically simulating the final end user 

experience. But while end-to-end testing should be a part of your QA 

activities, relying on it as the primary QA practice often leads to late-

cycle detection of errors, and delays in releasing products to market.

To be clear, end-to-end testing is valuable and should be done—but 

it should be used to ensure that the pieces fit together properly, not 

as a means to detect defects. The system will be able to validate 

some requirements, but it cannot simulate all types of situations, and 

building a system that can do this is costly and time-consuming.

Testing the example system described above poses a significant 

challenge because it is comprised of several separate applications 

working in tandem. When performing test scenarios, simulating an 

acceptable range of interactions at different ends of the system may 

be difficult. The same applies to response verification. In this example, 

the primary test case may include the following actions:

1.	 Stimulating the blood sensor

2.	 Inducing a data package

3.	 Propagating the data to the cloud

4.	 Generating an alert from the cloud

5.	 Waiting for response from human medical staff

6.	 Generating alarm/notification for the patient

7.	 Changing the injection schedule or delivering an immediate 

injection

Later-stage testing to verify this scenario is extremely labor intensive 

and costly. Additionally, as more organizations move toward agile 

development approaches, it becomes more and more difficult to 



© 2017 Parasoft Corporation

3

adequately test within iterations. There are also potentially long 

waiting periods during the development process to start testing. 

Organizations are faced with a trade-off decision between speed and 

quality.

Automated system tests can address some of these issues, but 

automation at this high level is very time consuming and unreliable. 

Additionally, issues with test-infrastructure access result in 

development teams becoming overwhelmed with problem reports in 

between long periods of silence from QA.

In order to test this scenario and find potential root causes of problems 

that may emerge, components should be isolated and tested early. By 

shifting testing to the left, organizations can leverage more effective 

automation to find and fix systemic defects early in the process. 

Software engineers and testers can generate more useful data about 

the code to prioritize tasks according to their development policy, 

saving time and money over the entire development lifecycle. These 

are well-known concepts in software testing, gaining importance in 

IoT world.

Deconstructing the System into Layers for More Effective Testing

There are two primary challenges associated with decomposing applications into their constituent layers. First, designing the solution in a way 

that is conducive to segmenting it into smaller building blocks with well-defined interfaces. Second, building automated testing frameworks 

around these smaller units. It is up to the organization to decide on the level of granularity for testing. Depending on the application, you might 

test at the function level with pure unit testing, or target the integration level, for instance.

In general, a test plan should include a combination of unit testing, integration testing, and end-to-end testing. The proportion of unit tests to 

integration tests may vary depending on the complexity of the solution. The more complex the solution, the more important unit tests become, 

because as the complexity of the software grows, it becomes more difficult to stimulate high-level interfaces that ensure that the various paths 

are executed.

Unit testing, though, is expensive in terms of time and resources. Someone with programming expertise, i.e., an engineer, must write the tests. 

And because they are closely tied to the code, unit tests are also brittle. Changes to the code could easily impact tests, so an engineer is also 

required to constantly maintain the tests. As you move further up the stack, functional-level tests are less prone to breakage, but it becomes 

harder to identify systemic issues. When a unit test fails, on the other hand, identifying the root causes is easier. This trade-off is why we 

recommend a blended approach for testing not just IoT environments, but any application where speed and quality matter.

For IoT solutions, the first natural layer contains the wireless communication components. This is where sub-systems interact via APIs. Underneath 

the APIs are messaging protocols, such as MQTT or HTTP sending payloads, such as JSON or REST, as well as proprietary protocols and binary 

payloads. In the IoT world, the communication usually follows a publish/subscribe or request/response (e.g. post/get) communication model. The 

publish/subscribe model involves broadcasting data while other components listen for and consume the published data and perform an action. 

The request/response model involves sending a message to a service directly and asynchronously waiting for a response.

In any case, the overall approach will be to use the module interface definition to build the test suites and automate the execution. In our medical 

device example, determining testable subsystems is simple: testing can be focused around the blood sensor, injector, cloud application, and 

mobile phone application. 

AUTOMATING TESTS FOR LOW-LEVEL 

EMBEDDED SUBCOMPONENTS

The blood sensor and injector are examples of 

low-level embedded devices that interact with 

other components of in an IoT solution using 

services. Because they do not have an API vs a 

complex user interface, the test automation task 

is much easier. To do this, we need a framework 

for stimulating the SUT (system under test) and 

verify its response, as shown to the right.



© 2017 Parasoft Corporation

4

For simple scenarios, python or simple scripts can serve as service testing solutions. There are 

a number of scripting utilities that easily allow you to send simple payloads for testing purposes. 

But this tactic doesn’t scale. 

As the number of test scenarios grows, adding and managing the scripts becomes difficult and 

inefficient. Implementing more complex parameters or sequences is very difficult to do with 

simple scripting tools. For example, if you want to make a call depending on the value of a 

previous call, or verify that a particular element is in the payload, you may end up spending a lot 

of time building your own solution.

Results validation and consistent reporting are also difficult to achieve. A dedicated tool that 

simulates a range of payloads based on realistic test scenarios ensures the best results.

AUTOMATING TESTS FOR THE SERVER COMPONENTS

On the back-end of the example solution is a cloud-based healthcare system that receives 

regular reports from each registered patient about glucose levels. The database contains all 

historical data, as well as additional patient-specific health information.

The process is similar to testing the sensor: simulate the system by sending a simulated package 

of data from the patient. If a new blood scan shows a significant deviation, the system must 

determine the appropriate warning to return. High-priority warnings involve human medical staff 

consultation. The warning message sent back to the patient may contain information about the 

nearest hospital, urgent care, or other medical facility, as well as a new injection schedule. This 

is presented on the schema below: 

The testing framework will execute a number of test cases containing different values for 

different patients and expect specific warnings to be generated in response.

But the server isn’t just one system – it’s a system of systems. And those systems may be 

unavailable for testing or unable to provide the correct test data necessary to run the test 

scenarios. These systems don’t just provide data, they can also provide logical responses based 

on the input values. As such, we need to be able to create realistic simulations of what the back-

end system is doing. (Moreover, these systems may not even be ready, which is a common 

challenge in an agile development approach.)

The same issue exists when testing the sensor, which may have dependencies on other 

subsystems or system components. For example, the blood sensor may need to make a request 

to another wearable medical device, such as an insulin pump, to verify that injecting glucose is 

safe. A dedicated service virtualization solution can help by simulating the human response to 

certain scenarios.



© 2017 Parasoft Corporation

5

Isolating Components to Improve Automation
In most cases, achieving sufficient automation around the tested components requires the interactions to be isolated from the real world. The 

strategies for isolation depend on the technology and the type of interactions.

ISOLATING THE LOW-LEVEL EMBEDDED SENSOR

After the SUT is stimulated, it will start performing the requested activity. In this case, scanning the blood to determine the glucose level. The 

question is how to provide a reliable input to the tested system so that it can perform its activity and respond to the test framework with a result 

that can be positively validated.

We could potentially place the sensor probe in a liquid with a known level of glucose and other parameters corresponding to real blood. But this 

approach is neither practical nor scalable. A better approach would be to intercept the function call that reads from the probe and redirect it to a 

testware stub/mock or virtual asset for generating and simulating a response. This will eliminate the probe itself from the testing process, while 

enabling the opportunity to perform automated testing of all other parts of the system. The basic idea for this approach is presented below:

A stub or mock (sometimes called a test double) of the interaction needs to be installed to emulate a hardware function call. The stub should 

be able to respond with reasonable values during the test process using hard-coded values or reading test data from an external data source.

If the test framework requires significant flexibility for the response configuration, a larger investment into the testware may be necessary to 

provide an API that can be used for setting parameters for the stub before executing the test case:



© 2017 Parasoft Corporation

6

The difficulty of stubbing the tested system depends on a few factors. If its interactions with the 

outside world are complicated, or if the code was not designed to be testable, implementing stubs 

to emulate functions from other components will be more difficult. We assume that our example 

is a simple C language function. The function can easily be emulated with a test stub that can be 

installed or injected by conditional compilation. With enough forethought, the application can be 

structured so that functions are appropriately distributed across the source files. This would enable 

us to swipe out several object files from the linking command line and replace them with object 

files containing test versions of the functions.

For more complex cases, we recommend using code instrumentation tools, which can automatically 

stand in place of original definition just before the compilation. Using a code instrumentation tool 

greatly reduces the effort spent on test asset management.

ISOLATING SERVER COMPONENTS

On the server side of the solution, we have a similar challenge related to test automation. 

Part of the tested system is a service that provides human medical consultations. A group of 

medical experts are connected to the prioritized queue for consultation requests. The first person 

that becomes available processes the next highest priority request. To enable automated testing, 

we need to replace this part of the system with a virtual equivalent. Consider the below:

For simple test cases, you can use a stub that contains a node.js script to produce standard re-

sponses. But for more advanced scenarios, a service virtualization tool can allow you to define a 

response depending on the input pattern. You can also use service virtualization to record actual 

traffic and replay it to simulate the real operation of a connected system. In some cases, you may 

want to switch between a real system and virtual asset.

Requirements and Code Coverage:

ARE YOU FINISHED TESTING?

A well-designed test framework allows you to easily add test cases and automate execution, but 

how do you determine if you’ve done enough testing? You can cover the existing requirements 

with tests as your baseline. 

A common grievance amongst testers, though, is the lack of requirements — especially quality 

requirements that are conducive to crafting applicable tests. Unfortunately, there are no solutions, 

automated or otherwise, for producing good functional requirements.



© 2017 Parasoft Corporation

7

If the requirements are complete and test cases have been created 

to cover them, in most cases you will gain visibility around the impact 

of failing test cases. But we also need a way to test non-functional 

requirements to understand what happens inside the system as the 

code is exercised. Is the application secure? Does the application 

perform reliably? Where is the business risk? 

We can answer these questions by implementing a tool to capture 

code coverage, collect metrics, and correlate them with test results 

to make informed decisions about when to release and the impact 

of change.

Code coverage tools are often used in conjunction with the execution 

of unit tests. The code is instrumented and, as the tests execute, 

data about the parts of the code that are touched is captured. As 

stated earlier, unit tests are brittle and expensive to implement, which 

presents a challenge. Additionally, functional testing may also be 

required to exercise code that’s difficult to run with unit tests. Therefore 

to obtain accurate and complete code coverage information, data 

from both unit and functional tests needs to be merged, taking into 

account overlapping coverage. This is very important if the system 

is a safety-critical application, such as our example, where accurate 

coverage is necessary for FDA approval.

Some testing solutions on the market are able to collect coverage data 

from a variety of testing activities and merge them to provide accurate 

coverage results. The key is collecting both code coverage, as it 

relates to the structure of the physical code, as well as requirements 

coverage, as it relates to the stated and assumed requirements.

With a code coverage tool in place, it is much easier to analyze the 

quality of test cases. Practice shows that even after executing all test 

scenarios that seem to cover all requirements, some portions of code 

may not have been executed. Analyzing uncovered sections of the 

code allows you to make a decision about whether additional testing 

is required. It is common that those uncovered sections of the code 

require special attention — it may be error-handling code or code for 

processing unexpected inputs. It may appear that the easiest way 

for verifying if such code works correctly is by applying unit tests 

together with stubbing/mocking frameworks to override standard 

behavior of software components and to force code execution to go 

through rare path.

Finally, it is extremely valuable to tie the code coverage results to 

the requirements. In this way, we can understand the risk, which may 

be associated with specific test cases. The coverage information can 

help you prioritize tests as a result of change.

LOAD TESTING

Verifying the system correctness cannot be accomplished without 

checking how it responds under extreme conditions, such as 

heavy traffic. With IoT solutions, not all components have the 

same performance characteristics or requirements/service level 

agreements (SLA). 

For example, the sensor layer, which is predominantly a data producer, 

is very unlikely to become a bottleneck and has limited exposure to 

heavy traffic. The server side, however, should absolutely be verified 

for handling the defined maximum load.

This goal can be accomplished with dedicated performance testing 

tools, but the key is to set up and validate the correct SLA at each 

layer within the application by asking fundamental questions of each 

layer: How many sensors are connecting back to the server? How 

frequently are they sending and receiving data? What is the response 

time from the server to the sensor?

When executing performance testing of an individual component, 

just as with automated testing under normal working conditions, 

you need to isolate the component from its dependencies. Service 

virtualization enables you to simulate different SLA scenarios, such as 

partial payloads and extreme latencies, to uncover hidden problems 

and run corner-case scenarios that are impossible to achieve in a full 

end-to-end test environment.

SECURITY TESTING

Ensuring the security of the solution is one of the most demanding 

tasks during the development. This is because it relies heavily on the 

team’s experience. It is not only about the QA team maintaining their 

knowledge of specific threats, though. It is also about the developers 

being aware of unwanted code patterns that introduce vulnerabilities. 

Establishing a regular code review process among development and 

QA teams can help. Developers should review the source code they 

create and mutually educate them, while QA teams should review cre-

ated test scenarios to ensure that they build security into the system.

You should automate the execution of source code static analysis 

tools as part of the development process to expose patterns that lead 

to security vulnerabilities. A static analysis solution that implements 

good programming practices, such as CWE or CERT, will scan the 

code and check for patterns that may lead to exploitable code.

It is especially critical within IoT environments that the static analysis 

tool can cover all the coding technologies used for our system. Failing 

to analyze even one small component of a solution without security-

oriented scanning may leave an opening for a malicious hacker to 

infect the entire system.

Executing static analysis should be part of the development policy: 

•	 Define the set of patterns that should be avoided to prevent 

defects that are a risk to your organization.  

•	 Use early stage flow analysis or dynamic analysis to identify 

potential weaknesses prior to system tests.  

•	 Use penetration testing to test the APIs.  

At each stage, the policy should be refined based on the problems 

reported. In this way, you are able to systemically prevent defects.



Parasoft helps organizations perfect today’s highly-connected applications by automating time-

consuming testing tasks and providing management with intelligent analytics necessary to focus 

on what matters. Parasoft’s technologies reduce the time, effort, and cost of delivering secure, 

reliable, and compliant software, by integrating static and runtime analysis; unit, functional, 

and API testing; and service virtualization. With developer testing tools, manager reporting/

analytics, and executive dashboarding, Parasoft supports software organizations with the 

innovative tools they need to successfully develop and deploy applications in the embedded, 

enterprise, and IoT markets, all while enabling today’s most strategic development initiatives 

— agile, continuous testing, DevOps, and security.

ABOUT PARASOFT

Copyright 2017. All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or reg-
istered trademarks of Parasoft Corporation. All other products, services, and companies are trademarks, registered 
trademarks, or servicemarks of their respective holders in the US and/or other countries.

www.parasoft.com

Parasoft Headquarters:
+1-626-256-3680

Parasoft EMEA:
+31-70-3922000

Parasoft APAC:
+65-6338-3628

8

CONCLUSION

Automated software quality activities such as testing of requirements, collecting code coverage, 

unit testing, or load testing, are not new. They are well-known techniques in software testing, 

but not necessarily considered when building a “normal” system. In an IoT environment, these 

techniques must be considered. IoT systems require thinking about software quality in a larger 

scope.

IoT solutions, such as our medical device example, are different from “normal” systems because an 

individual feature or function may span multiple layers of the solution. An action initiated at a low-

level embedded sensor implemented with C language can trigger messages that are propagated 

via a middleware broker codded in Java to the back-end, which may be implemented with .NET or 

Java. All of these layers form a single functional chain, which is only as reliable as the weakest link.

Delivering a high-quality system requires testing capabilities at every layer: the low-level layer in 

C code, the API or SOA testing layer, and the hard-to-access back-end part of the solution. But it is 

equally important to equip teams with a reporting framework that allows testing data aggregation 

from different test activities, so that it is possible to access the quality and completeness of the 

feature implementation throughout all the layers of the system.

Consider the cost associated with the example system we discussed in this paper. A design 

failure far outweighs the cost of deploying a testing solution that enables you to isolate and test 

components, simulate a variety of message payloads with API or SOA testing, and simulate third-

party or back-end systems that you may not always have access to.


