
1 © 2017 Parasoft Corporation

Perfecting Software

Top 5 Unit Testing
Best Practices
Technical Whitepaper

Executive Summary
Software developers employ unit testing to individually scrutinize very small parts of an application (“units”),
to test if they are operating properly. Unit tests are proven development testing activities for building qual-
ity into software, but only work as intended if they are written correctly, used consistently, and maintained
as the code evolves.

Upfront time and effort is required to reap the benefits of unit testing, which saves overall development
time and effort over the life of the application. In many organizations, though, the argument for dedicating
resources to unit testing upfront is outweighed by the need to finish the project on time and on budget.
This approach is unnecessarily risky, as it assumes that defects found in QA or in the field are acceptable.

In the long run, as shown in the chart to the left,
organizations will benefit from spending a little
extra time during the coding stage, as opposed
to a lot of extra time in the integration phase.

In this paper, we’ll explore simple unit testing best
practices for optimizing your development efforts.
You’ll learn how to:

• Create actionable tests for the present and the
future.

• Ensure that unit testing is adopted across the
team.

• Help the team avoid unit testing pitfalls.

Unit testing helps prevent costly field-reported
bugs by finding defects as early as possible.

Source: Applied Software Measurement, Capers/Jones, 1996

Costs Associated with Addressing
Defects Throughout the SDLC

2 © 2017 Parasoft Corporation

1. Design Tests for Precision
Committing to running unit tests is a great start, but the next step is to resist the temptation to hammer
them out without planning how tests will target the code and scale as it evolves. Tests require strategy to
be effective, otherwise you may see a large amount of noise, or worse, tests that fail to flag defective code.

Avoid tests that produce a failure if a unit that isn’t the target of the test fails. For instance, if the function
you’re testing depends on a different function, you will need to write a separate test targeting the depen-
dent function. This is deceptively simple because you also want to make sure that your test is focused on
the important aspects of the function. For example, if the unit under test runs calculations, your test needs
to make sure that the unit correctly calculates; don’t be tempted to include variable input consistency—
that’s a separate test.

Remember these two simple rules when creating your unit test: First, what does it
mean when the test passes? And second, what does it mean when the test fails? If
you cannot answer that question then you need to rethink or redesign the test.

Writing and running a good unit test takes time and should be factored in during the planning process. Se-
curity vulnerabilities, memory errors, and poorly structured code could be lurking in your application, and
it’s far less expensive to find and remediate them during the development process than in QA. That goes
double for defects found in the field.

2. Stop Writing Tests from the Hip
One of biggest reasons for failing to consistently run unit tests is that they become noisier as the code
evolves, which is usually a sign that the tests have not been maintained. Ignoring or sporadically main-
taining unit test suites is chronically justified by arguing that rewriting the tests will put the team behind
schedule. This is symptomatic of a “temporary-test” mindset in which the developer subscribes to the
I-just-need-to-test-this-one-thing-right-now approach. From the temporary-test perspective, the developer
is more likely to write unit tests that can’t be maintained.

It’s good that the developer is even taking time to conduct unit tests at all, but he or she must also take
the extra time to think about how to structure the test so that it can be maintained to keep up with code
as it evolves.

Think of writing code like writing a technical document – if you rely on a spell checker to find spelling er-
rors in this type of document, it will probably return a slew of false positives. But suppose you added the
technical terms in your document to the spell checker library. You would successfully reduce the noise and
be able to confidently finish writing your document. And if you continued to maintain your spell checker
dictionary, it would be easier to find real problems when you wrote a new document with new technical
terminology.

Similarly, developers must do a little planning and maintenance in order to make sure that their tests are
able to update as the software evolves.

3 © 2017 Parasoft Corporation

Don’t Forget the Data

Data used in test assertions can also affect maintainability. Unit tests are tightly coupled to the code, which
helps you control the data because the expectations are defined alongside the test. This is a double-edged
sword, however, because the cost of having the data available means that you must also keep the data up
to date.

3. Learn the Art of the Assertion
Writing assertions is actually very easy, which is why the number of assertions increases as the test suites
grows. When you start writing test suites, it’s easy to assert everything and throw it into the code. Consider
where the assertions are going and ask the following questions:

• Does this matter? Is it important?

• Does it help me distinguish an actual failure?

• Will I be able to maintain it in the long term?

Writing a technically-correct assertion does not guarantee that the data will be properly processed. The as-
sertion needs to test the function based on your intentions, otherwise the test is just going to create noise.
The logic of your assertions must remain consistent with the application, so you should assert something
that connects to the logic of the application.

Developers have a range of possible assertions available: assert null, assert true/false, assert contains.
Breaking assertions down to a true/false condition, though, simplifies unit tests. In addition, writing asser-
tions that check values by range, as opposed to equivalents, provides better scalability and maintainability
over the long term.

Lastly, it is helpful to write tests that aid developers in understanding what failed so that they have an idea
of how to address the failure. In the following example, an assertion returns a string that let’s you know
what went wrong:

public Integer getNumber() {

 Scanner input = new Scanner(System.in);

 System.out.print(“Enter a number between 0 and 10: “);

 int number = input.nextInt();

 // assert that the absolute value is >=0

 assert (number >=0 && number <=10) : “bad number: “+number;

 return number

}

When the person examining the failure is armed with useful information, there is a greater chance that the
problem will be investigated and fixed.

4 © 2017 Parasoft Corporation

4. Automate Regular Test Execution
The simplest way to ensure that unit tests are executed is to integrate automated testing into your develop-
ment process. This way, developers are never in a position to decide whether or not they should run a test.

An additional benefit is that the tests will prevent integration problems. If developer A’s code passes local
unit tests, and developer B’s code passes local tests, there still may be an issue when the software builds.
These issues will be missed if there isn’t a policy implemented for running continuous testing to help you
find and correct integration problems.

Automating your testing means complete integration:

• No humans should be required for input or review.
• Tests must be independently and consistently repeatable.
• Tests must not have dependencies.
• Tests must be able to run over and over again on supported configurations.

Preparing Your Test Suite for Automation

Removing noisy tests before automating them will decrease the chances of legitimate test failures being
dismissed as false positives. Inevitably, there is a certain percentage of noise that most developers are
comfortable accepting, but it is still important to strive for quiet test suites.

If your noisy test suites cause you to scan through lines of code to identify legitimate defects, you should
consider the following process for getting rid of noise:

1. Run your test suite (make they have assertions).
2. Turn off, but don’t delete, any test that fails. If time permits, scan through the disabled tests to

identify any you might want to go back and fix.
3. Run the test suite again.
4. Repeat step 2.
5. Run the tests on a different system, including a different OS or non-standard directory if possible.
6. Repeat step 2.
7. Run the tests on a different date (the actual next day or change the clock on your computer).
8. Repeat step 2; if your application has time dependencies, then you may want to keep them.
9. Run coverage analysis and write new (better) tests to fill in any gaps.

Tests that you turned off may be useful for guidance as you fill in the gaps, but it’s more often better to start
fresh because you will (hopefully) become a better programmer over time and will likely be able to create
better tests. You should also consider running coverage analysis before and after cleaning out your suite
to see how removing tests has affected your coverage. You may find that you need to fix and replace some
of the tests, or you may find that turning off all those tests had no effect on the coverage results.

5 © 2017 Parasoft Corporation

Letting Go

It can be extremely difficult for a developer to turn away from tests he or she wrote—especially if they still
work. But in many cases, it’s the right thing to do. Brilliant authors learn to delete favorite scenes because
they don’t add to the plot; captivating movies are made more entertaining by removing unnecessary ex-
changes; developers must learn to do the same. (If you are having a hard time letting go, use the two rules
identified in Best Practice 1.)

5. Adopt a Unit Testing Policy
These testing best practices are technical in nature, but all of them are underlined by the need for human
diligence. Developers are faced with making coding and testing decisions every day that go beyond the
software, also affecting the business. These decisions determine the safety, security, performance, and
reliability of the software that drives the business, giving developers power to introduce or minimize busi-
ness risks.

The key to reining in these risks is to align software development activities with your business goals. This
can be achieved through policy-driven development, which ensures that developers deliver software that
matches expectations set by the business.

Policy-driven development must include:

1. Clearly defining expectations and documenting them in understandable policies.
2. Training engineers on the business objectives driving those policies.
3. Monitoring policy adherence in an automated, unobtrusive way.
4. Assoiating non-functional requirements with objective metrics, including areas like performance,

security, and reliability.

We recommend implementing a policy that states, for example, that each function, method, or class, has
at least one unit test associated with it. You can even determine a policy for how to create test suites. The
following examples of unit testing policies may be a good place to start:

• All functions must have a unit with an assertion.
• Assertions must include a pass/fail condition.
• Test suites must run every time a change set is committed.
• Always create a test for defects found in the field.
• All tests must be verified by at least one peer.

Although peer reviewing tests hasn’t yet become a regular practice, the process provides tremendous
value, helping make sure that tests aren’t noisy and are testing what they are supposed to test.

Policy vs. Guidelines

The main reason organizations fail to implement software development practices that they know will have
a positive impact is that they rely on guidelines to govern software development rather than policies.

6 © 2017 Parasoft Corporation

About Parasoft

Parasoft helps organizations perfect today’s highly-connected applications by automating time-consuming testing
tasks and providing management with intelligent analytics necessary to focus on what matters. Parasoft’s technolo-
gies reduce the time, effort, and cost of delivering secure, reliable, and compliant software, by integrating static and
runtime analysis; unit, functional, and API testing; and service virtualization. With developer testing tools, manager
reporting/analytics, and executive dashboarding, Parasoft supports software organizations with the innovative tools
they need to successfully develop and deploy applications in the embedded, enterprise, and IoT markets, all while
enabling today’s most strategic development initiatives — agile, continuous testing, DevOps, and security.

Parasoft Corporation
101 E Huntington Drive
Monrovia, CA 91016 USA
Sales: 1-888-305-0041
Int’l: +1-626-256-3680

All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or registered trademarks of Parasoft Corporation.
All other products, services, and companies are trademarks, registered trademarks, or servicemarks of their respective holders in the US and/or
other countries.

Guidelines describe suggested behavior, whereas policies define expected behavior. For example, “wash
your hands after using the restroom” or “look both ways before crossing the street” are guidelines. They’re
great suggestions, but they cannot be fully enforced. For more information about defining expected behavior,
read our whitepaper about implementing policy-driven development.

Conclusion
Unit testing is an invaluable tool for ensuring the quality, security, safety and reliability of your software. If
your organization is adopting (or has already adopted) a development testing strategy that includes unit tests,
you’re part of the way there. But in order to reap the full benefits of unit testing, developers should:

• Take time to plan and peer review their tests
• Write maintainable tests
• Use assertions to control data
• Automate regular, continuous test execution
• Elevate unit testing from recommendation to development policy

The organization, furthermore, must recognize that following unit testing best practices requires an upfront
investment in terms of development resources. This investment is necessary to ensure that developers are
comfortable with the unit testing policy so it can be properly executed.

